Biobehavioral Health Building

University Park, PA

<u>Tech 2 Report</u>: Pro-Con Structural Study of Alternate Floor Systems

2012-2013 AE Senior Thesis

Rendering provided by BCJ

Daniel Bodde Structural Option Advisor: Heather Sustersic 10/12/2012

Daniel Bodde

Advisor: Heather Sustersic

Table of Contents

Executive Summary	3
Building Introduction	4
Structural Overview	5
Foundation	5
Floor/Framing System	6
Lateral System	8
Design Codes	10
Material Properties	
Design Loads	11
Dead	11
Live	12
Snow	12
Alternative Floor Systems	13
Existing Composite Slab, Beam, and Girder System	14
Hollow Core Precast Planks on Steel	15
One Way Concrete Slab with Interior Beams	17
Two Way Concrete Slab with Drop Panels	17
Comparison Chart	
Conclusion	19
Appendix A: Calculations for Composite System	20
Appendix B: Calculations for Hollow Core Precast Planks	25
Appendix C: Calculations for One Way Concrete Slab with Interior Beams	27
Appendix D: Calculations and spSlab Output for Two Way Concrete Slab with Drop Panels	
Appendix E: Comparison Calculations	43
Appendix F: RSmeans Cost Estimate Tables	

Daniel Bodde

Advisor: Heather Sustersic

Executive Summary

The following technical report was written to compare various alternate floor systems for the Biobehavioral Health Building. Through the use of various tools and calculations, preliminary sizes were developed and summarized in the report. Such things as deflections, system depth, cost, constructability, etc. were calculated so to provide an easy comparison between the systems. All of the construction documents were provided by Massaro CMS Services.

In this report the follow floor systems were looked at:

- 1. Composite slab, beam, and girder system (existing)
- 2. Hollow core precast planks
- 3. One way concrete slab with interior beams
- 4. Two way concrete slab with drop panels

All of the systems led in at least one category that was used for comparison. For example the hollow core system is the easiest when it came to constructability but it also had the deepest system at 42". For this reason it is an unlikely candidate for a flooring system. As for the other systems they all seemed to be very plausible.

Daniel Bodde

Advisor: Heather Sustersic

Building Introduction

Located on the campus of the Pennsylvania State University in University Park, Pennsylvania is the Biobehavior Health Building (Figure 1). It is currently under construction and is scheduled to be finish in November 2012. When completed, it will house faculty and graduate students from the College of Health and Human Development. The overall project cost is approximately \$40,000,000 and is being funded by the Pennsylvania Department of General Services. The BBH Building is comprised of 5 stories

above grade (including a penthouse) and has a full basement 100% below grade.

The BBH Building was designed to blend with that existing architecture that surrounds it. The majority of the façade was designed to mimic Henderson North's Georgian style architecture with its large amount of hand placed brick and limestone. On the northeast portion of the building the design is more modern to replicate HUB, which is a popular student hang out. Since a portion of the BBH building protruded into the HUB Lawn, which is a popular student hangout, a terrace has been

Figure 1: PSU Campus Map

provided (Figure 2). Not only does this offer a relaxing place for students to lounge but it will also be used as a stage for future concerts. A majority of the interior space is made up of offices and conference rooms that will house faculty and graduate students from the College of Health and Human Development. One of the key interior spaces is the lecture hall, which is located on the ground floor directly below the HUB lawn terrace. It is able to seat up to 200 people and has a ceiling designed to absorb any sounds or vibrations coming from the terrace above.

Figure 2: Rendered View from HUB Lawn

Daniel Bodde

Advisor: Heather Sustersic

Structural Overview

Foundation

CMT Laboratories, Inc. were the geotechnical engineers hired to investigate the soil conditions on which the BBH building was to be placed. In order to better understand the soil located on the site, CMT Laboratories took six test boring samples. With the information gathered from the test borings they were able develop recommendations for the structure below grade.

It was recommended that the foundations bear on sound dolomite bedrock. Accordiong the the geotechnical engineer, "the bedrock must be free of clay seams or voids near the surface to provide a stable surface to place the foundations." If bedrock is encountered before the required bearing elevations are met then over excavation is required and needed to be back filled with lean concrete. The bearing material must have a bearing capacity of 15 psf minimum.

The BBH Building uses a shallow strip and spread footing foundation system. The strip footings are placed under the foundation walls around the perimeter of the building. These footings are at an elevation of -15' and step down to -21' around the lecture hall. A typical strip footing is 30" and 18" deep as shown in Figure 3. Normal weight concrete is used for all footings and must have minimum compressive 28 day strength of 4 ksi.

Figure 3: Typical Strip Footing

Daniel Bodde

Advisor: Heather Sustersic

Floor/Framing System

The BBH Building floors are concrete slab on metal deck. The typical slab on deck consists of 3 ¼" light weight concrete on 3" 18 gage galvanized composite steel deck that is reinforced with 6"x6" W2.0xW2.0 welded wire fabric. Any deck opening that cuts through more than two deck webs needed to be reinforced. This was typically done with 4' long #4 rebar place at each corner as shown in Figure 4. This is typically done to keep the integrity of the slab and also prevents unwanted cracking in the concrete.

beam/girder. The number of shear studs varies per beam/girder. The typical floor plan has beams spanning N-S and girder spanning E-W. See Figure 6 for a typical floor plan.

Figure 5: Typical Section Through Composite System

Daniel Bodde

Advisor: Heather Sustersic

The composite slab supports gravity loads and transfers that load to the beams. The beams then transfer the load to the girders, which transfer the load to the columns. Finally the load is terminated at the foundations.

Figure 6: Typical Floor Framing Plan

Daniel Bodde

Advisor: Heather Sustersic

Lateral System

The BBH Building uses two types of lateral force resisting systems, moment frames and an eccentric braced frame. These systems are used to resist lateral forces placed on the structure due to wind and seismic loads.

The moment frames are in both the N-S and E-W direction. Frames resisting N-S loads go from column line 2 to column line 6. Frames resisting E-W loads are only located along column lines B and D. This type of system is use on every level above grade. These moment frames are accomplished by designing a rigid connection between the beams and columns. A rigid connection is created by welding the top and bottom flange of the beam to the column as shown in Figure 7. Location of the moment connections are shown below in Figure 8. Because the east wing of the BBH Building is exposed to the HUB lawn, it will experience higher wind loads. This could be the reason for using a duel lateral system was used and why it is configured as such (Figure 8).

Figure 7: Typical Beam to Column Moment Connection

Daniel Bodde

Advisor: Heather Sustersic

Figure 8: Location of Moment Connections (Red) and Braced Frame (Orange)

There is only a single eccentric braced frame in the BBH Building. It is located on the east side of the building along column line 10 (See Figure 8 above). Figure 9 shows the chevron bracing system used. Lateral movement in the frame is resisted through tension and compression in the HSS braces.

Figure 9: Eccentric Braced Frame

Daniel Bodde

Advisor: Heather Sustersic

Design Codes

The BBH Building was designed using the following codes:

- IBC 2006 (as amended by Pennsylvania UCC administration)
- ASCE 7-05
- ACI 318-05
- ACI530/ASCE 5
- AISC, 13th Edition

For this thesis the following codes were used in the analysis for the BBH Building:

- AISC, 14th Edition
- ASCE 7-05
- ACI 318-11

Material Properties

Stee	el
Wide flange shapes	A992 or A572, fy=50ksi
Square and round steel	ASTM A500 Grade B
tubing	
Miscellaneous shapes,	436 or 4572 fv=50ksi
channels and angles	A30, 01 A372, 1y=30K31
Round pipes	A53, Grade B, fy=35ksi
Plates	A36, fy=36ksi
Anchor Rods	ASTM F1554, Grade 55
Bolted connections for beams	A325 or F1852, 3/4"
and girders	diameter
Welded headed shear studs	A108 3/4" diameter
Stainless steel hanger rods	ASTM A564 Type 17-PH
	fy=50ksi

Concr	ete
Туре	28 day compressive
Foundations	4000 psi
Slabs and beams	4000 psi

Daniel Bodde

Advisor: Heather Sustersic

Reinforc	ement
Deformed Bars	ASTM A615, Grade 60
Welded Reinforcing Steel	ASTMA706 Grade 60
Welded Wire Fabric	ASTM A185

Design Loads

The following design loads given by the designer.

Dead

Dead Loads * (psf)	
Slate roof assembly	32
Green roof assembly	60
Floor, typical	60
Floor, stone tile	85
Plaza (above auditorium)	212
* self-weight of steel framing not included	members

Daniel Bodde

Advisor: Heather Sustersic

Live

Live Load	Uniform (psf)	Concentrated (lbs)
Offices/Classrooms	80(1)	-
Lobbies/Assembly	100	2000(5)
Corridors, Stair	100	2000(5)
Mechanical Rooms	150(3)	-
Roof	30(2)	-
Plaza	125(4)	-
Assembly (fixed seats)	60	-
Heavy storage	250	2000(5)
1. Includes 20 psf partiti	on load	
2. Or Snow Load whiche	ver is greater	
3. Used in absence of ac	tual weight of	mechanical equipment
4. Used for roof over lea	ture Hall	
5. Concentrated load sh	all be uniform	y distributed over a
2.5 sq ft area and shall b	e located so as	to produce maximum
load effects in the struc	tural members	

Snow

The calculations for the design snow load can be found in Appendix A. The drift load was designed for the penthouse green roof as that is where the most drift would accumulate.

Snow Load Type	Uniform (psf)
Flat Roof Load	21
Sloped Roof Load	24
Drift Load	89.5

Daniel Bodde

Advisor: Heather Sustersic

Alternative Floor Systems

In the text to follow, this tech report will provide a brief description of four different types of floor systems. These systems will be analyzed and designed for a typical by in the BBH building. From this a list of pros and cons can be established for each system which will allow for an adequate comparison between the different types of systems.

The following floor systems chosen to be analyzed for the BBH building:

- 1. Existing System: Composite slab, beam, and girder
- 2. Alternate System: Hollow core precast planks on steel
- 3. Alternate System: One way concrete slab with interior beams
- 4. Alternate System: Two way concrete slab with drop panels

Below is the typical bay used for this tech report:

Daniel Bodde

Advisor: Heather Sustersic

Existing Composite Slab, Beam, and Girder System<u>Description</u>

The BBH building is designed with one of the more common floor systems. The existing system is comprised of 3.25'' light weight concrete on 3'' 18 gage galvanized composite steel deck. This decking is able to achieve composite action with the beams and girders supporting it through the use of A108 $\frac{3}{4}''$

diameter shear studs that are welded to the steel.

A series of spot checks were done to verify that the existing flooring components had adequate strength to support the dead and live loads applied to it. Overall the system came to have a total depth of 27.25" and weighed approximately 53 psf. A rough estimate was done with the use of RSmeans Assembly Components to find an average cost of \$22.01 per square foot.

<u>Pros</u>

One of the advantages of this system is that it is very light weight per square foot. This allows for the use of long spans, which are favorable among most architects. Composite action allows the total system depth to decrease by using the strengths of concrete and steel (concrete being good in compression and steel being good in tension). Overall this system is fairly easy a far as constructability goes.

<u>Cons</u>

A composite system can become expensive due to the large amount of welding of the shear studs that has to take place. Also, having a light weight system can cause the floor to be sensitive to vibrations. Fire proofing will need to be applied to the steel members to meet the fire rating of the BBH building.

Daniel Bodde

Advisor: Heather Sustersic

Hollow Core Precast Planks on Steel Description

The first alternate system evaluated for the BBH building was the use of hollow core precast planks that sit on steel wide flange girders. These precast planks span N-S across the whole bay. Nitterhouse Concrete precast charts were used in the sizing of the planks. It was found that a 10" x 4' hollow core plank with 2" topping and 7.5" diameter strand pattern would be able to support the loads applied.

The girders had to be designed to support this new flooring system. Assuming the girder was simply supported, a W30 x 116 was found fit to support the planks. Even though a shallower wide flange girder could have been used, it was determined that the W30 was a more economical choice. Overall the system came to have a total depth of 42" and weighed approximately 96.9 psf. A rough estimate was done with the use of RSmeans Assembly Components to find an average cost of \$25.64 per square foot.

<u>Pros</u>

The biggest advantage to using this system is that the planks are made of site and shipped ready to be place on the structure. This eliminates curing time that usually comes with cast in place concrete. As far as constructability goes it is determined to be the easiest of the four systems.

<u>Cons</u>

With the increase in weight it is possible that the foundations might have to be resized, which can drive the already high square footage cost up. Also, this system is shown to be significantly deeper than that of the existing. This would cause either an increase in building height or a smaller above ceiling area for MEP piping/duct work. For these reasons this is an unlikely candidate for an alternate floor system.

Daniel Bodde

Advisor: Heather Sustersic

Prestressed Concrete 10"x4'-0" Hollow Core Plank

2 Hour Fire Resistance Rating With 2" Topping

PHYSI Cor	CAL PROPERTIES
A _c = 327 n ²	Precast b _w = 13,13 [n,
l₀= 5102 in.⁴	Precast S bcp= 824 In.3
Y _{bep} = 6,19 ln.	Topping Stct = 1242 In. ³
Y _{top} = 3.81 ln.	Precast Stop = 1340 In ³
Y _{top} = 5.81 in.	Precast Wt. = 272 PLF
	Precast Wt, = 68,00 PSF

DESIGN DATA

- Precast Strength @ 28 days = 6000 PSI
- 2. Precast Strength @ release = 3500 PS
- Precast Density = 150 PCF
- Strand = 1/2"Ø and 0.6"Ø 270K Lo-Relaxation.
- 5. Strand Height = 1.75 in.
- Ultimate moment capacity (when fully developed)... 6-1/2"Ø, 270K = 168.1 k-ft at 60% jacking force 7-1/2"Ø, 270K = 191.7 k-ft at 60% jacking force

- Maximum bottom tensile stress is 10 √fc = 775 PSI
- 8. All superimposed load is treated as live load in the strength analysis of flexure and shear.
- 9. Flexural strength capacity is based on stress/strain strand relationships.
- 10. Deflection limits were not considered when determining allowable loads in this table.
- 11. Topping Strength @ 28 days = 3000 PSI. Topping Weight = 25 PSF.
- 12. These tables are based upon the topping having a uniform 2" thickness over the entire span. A lesser thickness might occur if camber is not taken into account during design, thus reducing the load capacity.
- 13. Load values to the left of the solid line are controlled by ultimate shear strength.
- 14. Load values to the right are controlled by ultimate flexural strength or fire endurance limits,
- 15. Load values may be different for IBC 2000 & ACI 318-99. Load tables are available upon request.
- 16. Camber is inherent in all prestressed hollow core slabs and is a function of the amount of eccentric prestressing force needed to carry the superimposed design loads along with a number of other variables. Because prediction of camber is based on empirical formulas it is at best an estimate, with the actual camber usually higher than calculated values.

SAFE S	UPERIMPOSED	SER	VIC	ΈL	OAE	DS				11	BC 2	2006	3&1	ACI	318	-05	(1.2	D +	1.6	L)
St	rand							S	PA	N (F	EET)								
Pa	ittern	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44
6 - 1/2"ø	LOAD (PSF)	202	181	161	144	128	114	101	90	79	69	60	52	45	38		$^{\sim}$		\leq	\sim
7 - 1/2"ø	LOAD (PSF)	246	222	200	180	162	146	131	118	105	94	84	74	66	58				\leq	\leq

2655 Molly Pitcher Hwy. South, Box N Chambersburg, PA 17202-9203 717-267-4505 Fax 717-267-4518 This table is for simple spans and uniform loads. Design data for any of these span-load conditions is available on request. Individual designs may be furnished to satisfy unusual conditions of heavy loads, concentrated loads, cantilevers, flange or stem openings and narrow widths. The allowable loads shown in this table reflect a 2 Hour & 0 Minute fire resistance rating.

11/03/08

10F2.0T

Daniel Bodde

Advisor: Heather Sustersic

One Way Concrete Slab with Interior Beams

<u>Description</u>

The second alternate system evaluated for the BBH building is a one way concrete slab with interior beams. The concrete slab spans east to west and is supported by beams that span north to south. In the design of this system, provisions from ACI 318-11 were used. Overall the system came to have a total depth of 26.5" and weighed approximately 136.4 psf. A rough estimate was done with the use of RSmeans Assembly Components to find an average cost of \$20.31 per square foot. For simplicity in design, the beam was assumed to be simply supported on both sides. Max moments for the girder were

Image taken from RSmeans Assemblies book

found using STAAD. See Appendix C for calculations.

<u>Pros</u>

This system proved to be the best out of the four when it came to total deflection. Because of the large mass of the system the vibration sensitivity is very low and should not be a concern. Due to the inherent fire resistive properties of concrete, there is no need for fire proofing as it has an adequate fire rating.

<u>Cons</u>

Like in most cast in place concrete systems, there is going

to be a long lead time due to the concrete needing to cure to reach full strength. Shoring needs to be used in the construction of the one way system. Also this system is considerably heavier than the existing and will most likely cause the foundations to be increased, which will also drive up the cost.

Two Way Concrete Slab with Drop Panels <u>Description</u>

The last alternate system evaluated for the BBH building is a two way concrete slab with drop panels. In order to avoid tedious calculations, the CRSI 2008 Design Handbook was use to find a preliminary size of the slab and drop panel along with reinforcement for the column and middle strip. Then spSlab was used to come up with a more precise design of the system. See Appendix D for calculations and results.

Overall the system came to have a total depth of 19.75" and weighed approximately 155 psf. A rough estimate was done with the use of RSmeans Assembly Components to find an average cost of \$18.36 per square foot

Daniel Bodde

Advisor: Heather Sustersic

<u>Pros</u>

The two way system is the cheapest per square foot and also has the least total system depth. Because of the large mass of the system the vibration sensitivity is very low and should not be a concern. Like in the one way slab, the two way slab has inherent fire resistive properties therefore there is no need for fire proofing.

<u>Cons</u>

Also this system is considerably heavier than the existing and will most likely cause the foundations to be increased.

	Existing Composite Slab, Beam, and Girder	Hollow Core Precast Planks on Steel	One Way Concrete Slab with Interior Beams	Two Way Slab with Drop Panels
Weight	53 psf	96.9 psf	136.4 psf	155 psf
Foundation Impact	n/a	Foundation system needs increased to support larger self weight.	Foundation system needs increased to support larger self weight.	Foundation system needs increased to support larger self weight.
Total System Depth	27.25"	42"	26.5"	19.75"
Cost	\$22.01 per sq. ft.	\$25.64 per sq. ft.	\$20.31 per sq. ft.	\$18.36 per sq. ft.
Total Deflection	1.25"	1.12"	0.26"	0.87"
Vibration Sensitivity	Medium	Medium	Low	Low
Constructability	Moderate	Easy	Difficult	Difficult
Viable Option	Yes	Unlikely	Yes	Yes

Comparison Chart

Daniel Bodde

Advisor: Heather Sustersic

Conclusion

The process taken in this report gives great insight to how certain systems are considered and then finally chosen for the design of a building. Over the use of several tools and calculations, initial sizes were established and summarized. Such things as deflections, system depth, cost, constructability, etc. were calculated so to provide an easy comparison between the systems.

In this report the follow floor systems were looked at:

- 1. Composite slab, beam, and girder system (existing)
- 2. Hollow core precast planks
- 3. One way concrete slab with interior beams
- 4. Two way concrete slab with drop panels

All of the systems led in at least one category that was used for comparison. For example the hollow core system is the easiest when it came to constructability but it also had the deepest system at 42". For this reason it is an unlikely candidate for a flooring system. As for the other systems they all seemed to be very plausible. The two concrete systems could possibly be used in the thesis proposal for a concrete redesign next semester.

Daniel Bodde

Advisor: Heather Sustersic

CXisting andre: W2 (X44 E4] C=34 Daniel Boble tech 2 Steel Deck spot check Beam : W14x31 [14] +0 LW Concrete Slab: 3/4 tapping 29.5 3 spans (10'-4"span) Linshor pol unshar ad 3" 1864 ramiasite da 10'-4' 10'-4" 16-4" Loods: LL= 80pcf SUL=15 psf 95 est 2008 Vultcraft 31/1 18 SDI Max Unshord Clr Span 3 span = 15 > 10-4' OK Superimpord LL at 10-6" <10-4" dr span =218 psf > 95psf OK Existing Steel composite derk works

Appendix A: Calculations for Composite System

Daniel Bodde

Daniel Bodde Tech 2 Existing 2
Beam Spot Check (existing : W 4431 [47])
Doed load:
-typical floor DL = 40ps f
Live load:
- Office/classicom's LL = 80 ps f
Wu = 1.2 (60) + 1.6 (80) = 200ps f x 10.33'/coor = 2.07KK

$$\frac{1}{22.5'}$$
 A
R= 30.5K R= 30.5K
 $M_{u} = \frac{U^{2}}{8} = 225.2 K + ft$
Det = $\frac{129.5 (2)}{5} = 442.5 \times 2 = 88.5''$
Det = $\frac{129.5 (2)}{5} = 442.5 \times 2 = 88.5''$
Det = $\frac{129.5 (2)}{5} = 442.5 \times 2 = 88.5''$
 $M_{u} = \frac{U^{2}}{8} = 225.2 K + ft$
 $\frac{1}{8} = 10.2 K + 10 \text{ bm}$
 $-385 \text{ min} + \frac{1}{2} (0.5)(2) = 42$
 $\frac{1}{8} = -10 \text{ mod} \text{ ps}_{1,1} \text{ ris}$
 $-W cont w/f'(z = 4KT)$
 $\frac{1}{8} = -10 \text{ mod} \text{ ris}_{1,2} \text{ ris}_{1,2}$

Daniel Bodde

Daniel Bodde

Daniel Bodde Tech 2 Existing 4
Spot check Groder: (
$$U2|X44|[24]| <= 34$$
)
 $F=45,3$ ($F=45,3$) ($F=35,3$) ($F=35,3$)
 $H_{45,3}$ ($F=31,4$)
 $H_{45,4}$ (H_{4

Daniel Bodde

Deniel Badde Tech & Existing 5
Check wet conc def!

$$\Delta_{max} = \frac{1}{240} = \frac{31712}{240} = 1.65$$

 $T_x = 543.n^4$
 $\Delta_{w} = \frac{Pl^3}{2} = \frac{(7.12.1)(31)^3}{(22)(24000)(543)} = 0.54' < 1.55'' OK$

Daniel Bodde

Advisor: Heather Sustersic

Appendix B: Calculations for Hollow Core Precast Planks

Daniel Bodde

Daniel Bodde Tech 2 Hollow Core Plank check deflections: I=4930 in" 2 Live Load Dr. 4 L = 31×17 360 = 1.03" $D_{LL} = \frac{5 \omega l^4}{384 E \Sigma} = \frac{5 (.08 \times 29.5) (31)^4 (1728)}{(384) (2900) (14930)} = 0.34'' \angle \frac{5}{340} \nu$ Total Load AN 5 240 = 31 x12 = 1.55" $\Delta_{1+1} = \frac{5 \omega l^7}{384 \text{ EJ}} = \frac{5 (7.4) (31)^4 (1728)}{(384) (2900) (4930)} = 1.10^{11} < \frac{1}{240}$ Use W30 x 116 for girder

Daniel Bodde

Advisor: Heather Sustersic

Appendix C: Calculations for One Way Concrete Slab with Interior Beams

Daniel Bodde

Dariel Boolde Tech 2 Gre-way w/ borns 2
Beam Design (assume simply septented => conservative)

$$DL = 15 + $755 = 132.5 \text{ psf}$$

 $UL = 8 \text{ CPsf}$
 $UL = 1.2 \text{ D} + 1.6L$
 $= 1.2(1052.5) + 1.6(80) = 2.5| \text{ psf} \times 15.5' / \infty00 = 3.89 \text{ K/R}$
 $f = 1.2(1052.5) + 1.6(80) = 2.5| \text{ psf} \times 15.5' / \infty00 = 3.89 \text{ K/R}$
 $f = 1.2(1052.5) + 1.6(80) = 2.5| \text{ psf} \times 15.5' / \infty00 = 3.89 \text{ K/R}$
 $f = 1.2(1052.5) + 1.6(80) = 2.5| \text{ psf} \times 15.5' / \infty00 = 3.89 \text{ K/R}$
 $f = 1.2(1052.5) + 1.6(80) = 2.5| \text{ psf} \times 15.5' / \infty00 = 3.89 \text{ K/R}$
 $f = 1.2(1052.5) + 1.6(80) = 2.5| \text{ psf} \times 15.5' / \infty00 = 3.89 \text{ K/R}$
 $f = 1.2(1052.5) + 1.6(80) = 2.5| \text{ psf} \times 15.5' / \infty00 = 3.89 \text{ K/R}$
 $h_{14} = \frac{1.2}{8} = \frac{(3.89)(275 - \frac{18^{-1}}{22})^{-1}}{8} \times 1.1 = 4.19 \text{ K/R}$
 $h_{2} = 2.0 \text{ Mu}$ $h_{15} y = 5 \text{ H}^{2}$
 $h_{2} = (2.0)(419) \frac{5}{7} \longrightarrow d = 21.88''$
 $h_{2} = 2.5 \times 16} \times 150 = 4.69 \text{ F/R}$
 $U_{4} = 3.89 + 1.2 \times .949 = 4.45 \text{ K/R}$
 $M_{4} = \frac{4.45}{8} \times 2.5^{2} = 4136 \text{ K-P}$
 $M_{4} = \frac{1.45}{8} \times 2.8^{2} = 4.36 \text{ K-P}$
 $M_{4} = \frac{1.45}{8} \times 2.88^{2} = 4.36 \text{ K-P}$
 $A_{2} = \frac{1.12}{8} = \frac{1.12}{8} = 51n^{2} = A_{2}$
 $d = 25 - 1.5 - \frac{1.128}{8} = 22.9^{11}$

Daniel Bodde

Daniel Bodde Tech 2 Gre-uny u/ beams 3
Maired Moment:

$$a = \frac{4s}{4s} \frac{4s}{4y} = \frac{(5)/40}{(645)(4)(18)} = 4.90''$$

 $c = \frac{9}{4} = \frac{4.9}{(65)} = 5.74$
 $e_{5} = E_{*} \left(\frac{d-c}{c}\right) = .005 \left(\frac{22.9 - 9.74}{3.74}\right) = 0.0089\frac{10}{10} > E_{y}$
 $e_{5} = E_{*} \left(\frac{d-c}{c}\right) = .005 \left(\frac{22.9 - 9.74}{3.74}\right) = 0.0089\frac{10}{10} > E_{y}$
 $e_{5} = 6.9$
 $e_{5} = 6.9 \left(\frac{d-c}{a}\right) = (0.9)(5)(c)(22.9 - \frac{4.90}{3})$
 $= 5521.5 \text{ F-in}$
 $= 160 \text{ F- F+ > The OK}$
Check Asnia & Asmar:
Asnia $= \frac{37/2}{60} \text{ bd} = \frac{37/4}{6000} \times 18 \times 22.9 = 1.3 \text{ in}^{2}$
 $\frac{200 \text{ bd}}{6000} = \frac{(200)(15 \times 22.9)}{60.000} = 1.37 \text{ in}^{4}$
Asnia $= 0.85 \beta_{1} \frac{f'_{e}}{f_{e}} \frac{E_{e}}{E_{e}} = 0.85 (0.85) \frac{4}{60} \frac{0.003}{0.000} = .0264$
Asnax = 0.2064 × 16 × 22.9 = 8.5 in^{2}
As Ashar OK
Table A.8 min # of Ears for $b_{e} = 18^{11} \text{ f} = 9 \text{ bars } 156$
 $5 \# 1 < 4 \# 1 : \text{ bars fit}$
 $Use = 18^{11} \times 25^{11}$
 $bordow = 1/6 \text{ ft} = 9$
 $b = 18^{11}$
 $d = 22.9^{11}$

Daniel Bodde

Daniel Bodde

Daniel Bodde Tech 2 One way 4 borners 5
Estimate Size:

$$bd^2 = 20 \text{ Mu}$$
 $4..., b: $\frac{a}{2} d$
 $d^3 = (20)(5a7)^{\frac{5}{4}} \longrightarrow d = 23.62^{11}$
 $h = d+2.5$ use $h = 24.5^{11}$ $d = 20^{11}$
Required Steel:
 $A_{1er} = \frac{14}{41d} = \frac{5.7}{(4)(24)} = 5.5^{-1.8}$
 $try (G) # 9'$ $A_5 = (G)(1, a) = (G_{10}^{-5} : A_5)$
 $d = 24.5 - 1.5 - \frac{1128}{2} = 23.82^{11}$
Nominal moment:
 $a = \frac{A_5 f_{-1}}{G_{85} f_{5}} = \frac{(G)(4^{0})}{(0.81)^{6}(25)} = 5.29^{11}$
 $C = \frac{a}{\beta_1} = \frac{5.27}{G_{85} f_{5}} = 4.22^{11}$
 $E_5 = E_4 (\frac{d-c}{c}) = 0.003 (\frac{23.87 - 6.22}{4.22}) = 0.0085^{-1.6} > E_{7.1} g = 0.0085$
 $gM_7 = gA_5 f_{-1} (d - \frac{a}{2}) = (0.9)(6)(60)(23.87 - \frac{5.21}{2}) = 4.878 \text{ Km}$
 $= 573 \text{ K-ft} > Mu OK$
Check Amin & Amax
 $Amin \ge \frac{3767 \text{ kod}}{G_7} = \frac{3710007}{60(23.87)} = 1.51^{-3}$
 $\frac{200 \text{ kod}}{f_7} = \frac{200(63.87)}{G_{0.000}} = 1.59^{-6}$
 $M_5 > A_{5000} OK$$

Daniel Bodde

Daniel Boodle Tech 2 one way Wbegms 6 Smax = 0.85 B. fr En 10,004 = 0.83(0.85) 4 0.003 = 0.0206 Asman = 0.0204 12012357 = 9.83:12 > As OK Table A.8 min # of bors for by=20" \$# 9 bors is) 6#9 < 7#9 : bars fit or Use 20" × 26.5" girder

Daniel Bodde

Daniel Bodde

Daniel Bodde

Appendix D: Calculations and spSlab Output for Two Way Concrete Slab with Drop Panels

Daniel Boode Tech 2 2 way w/ drop panels 1 CRSF 2008 Design Hand book assume li=le=31 Find superimposed load (factored) W=1.2D+166 = 1.2 (15) + 1.6(80) = 146 psf Preliminary size of 2-way slab w/ drop panels: Slab thickness = 11.5" Square drop panel : depth = 8.25" width = 10.33 59 Column Size = 20" Input prelim size into spSlab. See spSlab out put for slob design

Daniel Bodde

$\begin{array}{c} \text{SPAN} \\ \textbf{SPAN} \\ \textbf{C-C.} \\ \ell_1 = \ell_2 \\ (\texttt{ft}) \\ \hline \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 $	actored Superim- posed Load (psf) 100 200 300 400 500 600 700	Square Pan Depth (in.) 4.25 6.25 6.25 6.25 8.25 8.25	Drop el Width (ft) 9.00 9.00 9.00	(Square Size (in.) = 11.5 i 12 16	³⁾ Column Υ _f n. = TOT	Colu Top Ext. +	Bottorn	CING	BARS (Middle	E. W.)		M	MENT	S	Factored 0 REINFORCING BARS (E. W.)					RS (E.	W.)	
SPAN Si C-C. ℓ ℓ ℓ ℓ ℓ (ħ) 27 27 27 27 27 27 27 27 27 27 27 28 28 28 28 28 28	100 200 300 400 500 600 700	Square Pan Depth (in.) 4.25 6.25 6.25 6.25 8.25 8.25	Drop el Width (ft) 9.00 9.00 9.00	Square Size (in.) = 11.5 i 12 16	Column γ _f n. = TOT	Top Ext. +	mn Strip (1) Bottom	Ton	Middle	The second secon			1.0	11 mm	Cunorim.	uperim- Square Column Strip			ING DARS (E. W.)			1
$\begin{array}{c} 2.7\\ \ell_1 = \ell_2\\ (ff) \\ 27\\ 27\\ 27\\ 27\\ 27\\ 27\\ 27\\ 27\\ 27\\ 2$	Load (psf) 100 200 300 400 500 600 700	Depth (in.) 4.25 6.25 6.25 6.25 8.25 8.25	Width (ft) 9.00 9.00 9.00	Size (in.) = 11.5 i 12 16	γ _f n. = TOT	Top Ext. +	Bottom	Ton		Strip	Total	Edge	Bot	Int	posed	Column	Column	Strip	Middle	Strip	Total Steel	
27 27 27 27 27 27 27 27 27 27 27 27 27 2	100 200 300 400 500 600 700	4.25 6.25 6.25 8.25 8.25 8.25	9.00 9.00 9.00 9.00	= 11.5 i 12 16	n. = TOT	AL SLAB		Int.	Bottom	Top Int.	(psf)	(1 -) (ft-k)	(†) (ft-k)	(ft-k)	(psf)	Size (in.)	Тор	Bottom	Тор	Bottom	(psf)	
27 27 27 27 27 27 27 27 27 27 28 28 28 28 28 28	100 200 300 400 500 600 700	4.25 6.25 6.25 8.25 8.25 8.25	9.00 9.00 9.00	12	n. = 101		DEPTH B	FTWEE	N DROP	PANEL	S	100		2:01	h = 11	.5 in. = T	OTAL S	LAB DE	TH BET	WEEND	OROP F	P
27 27 27 27 27 27 27 27 27 28 28 28 28 28 28	100 200 300 400 500 600 700	4.25 6.25 6.25 8.25 8.25 8.25	9.00 9.00 9.00	12 16	0.045		Derme			44 415	2.56	162.8	325.7	438.4	100	12	16-#5	11-#5	11-#5	11-#5	2.46	
27 27 27 27 27 27 27 27 27 28 28 28 28 28 28	200 300 400 500 600 700	6.25 6.25 8.25 8.25	9.00 9.00	16	0.815	12-#5 3	15-#5	12-#6	11-#5	11-#5	2.50	214.8	429.6	578.3	200	19	18-#5	9-#6	11-#5	11-#5	2.70	
27 27 27 27 27 27 27 28 28 28 28 28 28	300 400 500 600 700	6.25 8.25 8.25	9.00		0.648	12-#5 1	10-#7	14-#6	9-#6	11-#0	2.50	265.8	531.6	715.6	300	23	12-#7	11-#6	12-#5	11-#5	3.16	
27 27 27 27 28 28 28 28 28 28 28	400 500 600 700	8.25 8.25		19	0.702	12-#5 3	17-#6	13-#/	10-#5	10 #5	4.25	317.9	635.8	855.9	400	25	13-#7	10-#7	15-#5	9-#6	3.78	
27 27 27 28 28 28 28 28 28	500 600 700	8.25	9.00	21	0.631	13-#5 2	12-#8	26-#5	10-#7	10 #7	5.02	368 1	736.2	991.0	500	27	12-#8	9-#8	9-#7	15-#5	4.47	
27 27 28 28 28 28 28 28	600 700		9.00	23	0.720	15-#5 4	11-#9	12-#8	9-#0	15 #6	5.85	422.1	915.3	1136.3	600	27	12-#8	9-#9	14-#6	18-#5	5.04	
27 28 28 28 28 28	700	10.25	10.80	25	0.630	16-#5 2	14-#9	22-#0	9-#9	10.#8	6.85	476.2	1070.2	1282.0	700	27	13-#8	11-#9	9-#8	15-#6	5.93	
28 28 28 28		10.25	10.80	25	0.737	17-#5 4	17-#9	14-#6	17-#1	10-40	0.00	410.2										
28 28 28 28							10.45	47 45	12 #5	12.#5	2.62	182.7	365.5	492.0	100	12	16-#5	12-#5	12-#5	12-#5	2.51	
28 28 28	100	6.25	9.33	12	0.728	13-#5 1	16-#5	17-#5	10 #6	12-#5	3 18	240.6	481.1	647.7	200	19	20-#5	14-#5	12-#5	12-#5	2.81	
28 28	200	6.25	9.33	16	0.762	13-#5 4	12-#7	10-#0	10-#0	15.#5	3.80	297.0	593.9	799.5	300	23	13-#7	18-#5	10-#6	12-#5	3.38	
28	300	6.25	9.33	20	0.773	14-#5 5	11-#8	27-#5	10-#1	10 #7	4.48	356.5	713.0	959.8	400	25	14-#7	15-#6	16-#5	10-#6	3.90	
	400	8.25	9.33	21	0.731	15-#5 4	1/-#/	10-#7	10 #0	11.#7	5 16	413.0	826.0	1111.9	500	28	15-#7	10-#8	10-#7	16-#5	4.43	
28	500	10.25	11.20	24	0.631	15-#5 3	13-#9	10-#1	10-#0	10.#8	6.09	472.2	981.8	1271.2	600	28	13-#8	12-#8	12-#7	14-#6	5.29	
28	600	10.25	11.20	25	0.689	17-#5 3	15-#9	14-#0	12-#0	10-#0	0.00					1						
							10 40	44.40	10 #5	12-#5	2.65	203.6	407.1	548.1	100	12	17-#5	12-#5	12-#5	12-#5	2.46	
29	100	6.25	9.67	12	0.783	13-#5 3	10-#5	12 #7	16.#5	13-#5	3.30	266.6	533.3	717.9	200	20	16-#6	16-#5	12-#5	12-#5	2.94	
29	200	6.25	9.67	17	0.774	13-#5 5	1/-#0	10 #6	14-#6	12-#6	4.00	332.1	664.2	894.1	300	23	13-#7	14-#6	15-#5	13-#5	3.49	1
29	300	8.25	9.67	20	0.665	14-#5 3	10-#/	16 #7	10-#8	14.#6	4 85	396.2	792.4	1066.7	400	26	14-#7	17-#6	10-#7	11-#6	4.15	1
29	400	10.25	9.67	22	0.632	15-#5 2	12-#9	14 #9	12-#8	10.#8	5.63	461.5	923.1	1242.6	500	28	22-#6	12-#8	15-#6	18-#5	4.82	
29	500	10.25	11.60	24	0.658	17-#5 2	14-#9	14-#0	13.#8	11-#8	6.22	527.0	1064.6	1419.0	600	29	13-#8	13-#8	10-#8	11-#7	5.43	1
29	600	12.25	11.60	25	0.632	18-#5 1	20-#0	14-#0	10-#0	11.40	0.20				1	1					0.70	
				1	0.040	44.45.0	20 #6	15.#6	10-#6	13.#5	2.88	225.9	451.8	608.2	100	12	14-#6	14-#5	13-#5	13-#5	2.70	2
30	100	6.25	10.00	12	0.813	14-#0 3	11 #0	17.#6	10-#7	15-#5	3.56	297.0	594.0	799.7	200	20	16-#6	18-#5	10-#6	13-#5	3.09	1
30	200	8.25	10.00	17	0.665	14-#5 2	11 #0	16.#7	12-#7	10-#7	4.47	369.3	738.6	994.2	2 300	23	15-#7	12-#7	12-#6	15-#5	3.92	-
30	300	8.25	10.00	20	0.734	10-#5 4	17 #9	17-#7	11.#8	12-#7	5.22	440.8	881.6	1186.8	400	26	16-#7	11-#8	20-#5	18-#5	4.54	1
30	400	10.25	10.00	22	0.645	10-#5 3	16 #0	14-#8	10-#9	11-#8	5.89	513.3	1026.6	1382.0	500	29	22-#6	10-#9	10-#8	20-#5	5.01	
30	500	12.25	12.00	24	0.633	17-#0 2	10-#5	16.#8	12_#9	12-#8	6.91	585.0	1170.0	1575.0	600	30	15-#8	12-#9	11-#8	10-#8	6.00	2
30	600	12.25	12.00	25	0.700	19-#0 3	10-#9	10-40	12.113	12 110												-
	1				0.100	1 14-110 2	14-111	10-00	10-10	10-00	2.00	200.1	001.4	000	200	20	18-#6	14-#6	15-#	5 13-#5	3.24	4
31	200	8.25	10.33	17	0.731	14-#5 4	12-#8	14-#7	14-#6	12-#6	3.71	328.9	057.6	000.	0 200	2.0	10-110	10.41	10 11		0.00	
	000	10.20	10.00	20	0.042	10-10	15.40	15.#5	12-#8	13-#7	5.58	488.7	977.3	1315.	7 400	26	14-#8	3 21-#6	12-#	19-#5	4.78	5
31	400	10.25	10.33	22	0.760	10-#5 4	18-#9	16-#8	14-#8	12-#8	6.38	569.4	1138.7	1532.	9 500	29	14-#8	14-#8	11-#8	12-#/	0.45	2
31	500	12.25	12.40	24	0.712	19-#3 0	10-#3	10.00			-											

Daniel Bodde

Advisor: Heather Sustersic

					0000	000	0				0		
					00	00	00				00		
	00	000	0000	000	00		00		000	000	00		
	00	0	00	00	00		00		0	00	00		
	00		00	00	000		00		000	0000	0000	000	
	00	000	00	00		000	00		00	00	00	00	
		00	0000	000		00	00		00	00	00	00	
	0	00	00		00	00	00	0	00	00	00	00	
	00	000	00		0000	000	00	0	000	0000	000	000	(TM)
								====		_			
		Coj	oyrig)	at © 1 A	2003-20 11 righ)11, S	TRUC	TURE: ed	POIN	r, 110	o ay:		
Licensee stated	alace												

⁽²⁾ DESIGN RESULTS*

*Unless otherwise noted, all results are in the direction of analysis only. Another analysis in the perpendicular direction has to be carried out for two-way slab systems.

Strip Widths and Distribution Factors

Units: Width (ft).

			Width		Mor	ment Fact	or
Span	Strip	Left**	Right**	Bottom*	Left**	Right**	Bottom*
1	Column	12.34	12.34	12.34	1.000	1.000	0.600
	Middle	18.66	18.66	18.66	0.000	0.000	0.400
2	Column	12.34	12.34	12.34	1.000	0.750	0.600
	Middle	18.66	18.66	18.66	0.000	0.250	0.400
3	Column	12.34	7.17	14.75	0.750	0.750	0.600
	Middle	18.66	23.84	16.25	0.250	0.250	0.400
4	Column	7.17	7.17	7.17	0.750	0.750	0.600
	Middle	23.84	23.84	23.84	0.250	0.250	0.400
5	Column	7.17	12.34	12.34	0.750	1.000	0.600
	Middle	23.84	18.66	18.66	0.250	0.000	0.400
6 *Used	Column Middle d for bo	12.34 18.66 ttom rein	12.34 18.66 forcement	12.34 18.66 . **Used	1.000 0.000 for top re	1.000 0.000 inforcem	0.600 0.400 ent.

Top Reinforcement

Units Span	s: Widt) Strip	h (ft), Zone	Mmax (k-ft), Width	Хтан (ft Мтан	t), As (in Xmax	AsMin	(in) AsMax	SpReq	AsReq	Bars	
1	Column	Left Middle Right	12.34 12.34 12.34	0.39 1.15 2.61	0.240 0.445 0.685	3.064 3.064 3.064	25.901 25.901 25.901	14.802 14.802 14.802	0.009 0.026 0.060	10-#5 10-#5 10-#5	*3 *3 *3
	Middle	Left Middle Right	18.66 18.66 18.66	0.00 0.00 0.00	0.000 0.342 0.685	4.636 4.636 4.636	39.192 39.192 39.192	14.932 14.932 14.932	0.000 0.000 0.000	15-#5 15-#5 15-#5	*3 *3 *3
2	Column	Left Middle Right	12.34 12.34 12.34	58.32 0.00 638.66	0.750 12.210 23.670	3.064 0.000 4.907	25.901 25.901 40.201	14.802 0.000 5.286	1.349 0.000 8.177	10-#5 28-#5	*3
	Middle	Left Middle Right	18.66 18.66 18.66	0.09 0.00 212.90	0.996 12.210 23.670	4.636 0.000 4.636	39.192 39.192 39.192	14.932 0.000 13.175	0.002 0.000 4.985	15-#5 17-#5	*3
3	Column	Left Middle	12.34 14.75	657.57 0.00	1.000 14.750	4.907 0.000	40.201 30.972	5.286 0.000	8.428 0.000	28-#5	

Daniel Bodde

Advisor: Heather Sustersic

		Right	7.17	413.21	28.500	3.057	27.857	4.777	5.279	18-#5	
	Middle	Left	18.66	219.19	1.000	4.636	39.192	13.175	5.135	17-#5	
		Middle	16.25	0.00	14.750	0.000	34.121	0.000	0.000		
		Right	23.84	137.74	28.500	5.921	50.048	14.301	3.192	20-#5	*3
4	Column	Left	7.17	169.75	5.170	1.780	15.045	4.777	4.069	18-#5	
		Middle	7.17	179.54	9.015	1.780	15.045	6.141	4.316	14-#5	
		Right	7.17	182.19	9.160	1.780	15.045	4.525	4.383	19-#5	
	Middle	Left	23.84	100.88	1.000	5.921	50.048	14.301	2.331	20-#5	*3
		Middle	23.84	59.85	9.015	5,921	50.048	14.301	1.379	20-#5	*3
		Right	23.84	113.69	13.330	5.921	50.048	14.301	2.630	20-#5	*3
-	C 1	7 - 5-		450 01	1 000	0.057	07 057	4 595	E 000	10.45	
5	COLUMN	Lers	10.04	430.01	10.460	3.057	27.007	4.525	0.002	19-#9	
		Riddle	12.34	0.00	12.400	0.000	25.901	14.000	0.000	10.15	
		Right	12.34	98.81	23.920	3.064	25.901	14.802	2.299	10-#5	*3
	Middle	Left	23.84	152.95	1.000	5.921	50.048	14.301	3.549	20-#5	*3
		Middle	18.66	0.00	12.460	0.000	39.192	0.000	0.000		
		Right	18.66	0.26	23.429	4.636	39.192	14.932	0.006	15-#5	*3
6	Column	Left	12.34	2.61	0.145	3.064	25,901	14.802	0.060	10-#5	*3
-		Middle	12.34	1.15	0.385	3.064	25.901	14.802	0.026	10-#5	*3
		Right	12.34	0.39	0.590	3.064	25,901	14.802	0.009	10-#5	*3
											-
	Middle	Left	18.66	0.00	0.145	4.636	39.192	14.932	0.000	15-#5	*3
		Middle	18.66	0.00	0.488	4.636	39.192	14.932	0.000	15-#5	*3
		Right	18.66	0.00	0.830	4.636	39.192	14.932	0.000	15-#5	*3
	o.	-									

NOTES: *2 - Design governed by minimum reinforcement.

Top Bar Details

Units: Length (ft)

	-		Left	t		Conti	nuous		Rig	ht	
Span	Strip	Bars	Length	Bars	Length		Length	Bars	Length	Bars	Length
1	Column Middle					10-#5 15-#5	0.83				
2	Column Middle	10-#5 15-#5	8.31 5.79					16-#5 17-#5	9.57 9.57	12-#5	6.08
3	Column Middle	16-#5 17-#5	10.08 9.87	12-#5	6.50			10-#5 20-#5	10.08 7.64	8-\$5	6.50
4	Column Middle	4-#5	5.31			14-#5 20-#5	14.33 14.33	5-#5	6.07		
5	Column Middle	10-#5 20-#5	8.56 7.59	9-#5 	5.58			10-#5 15-#5	8.31 5.79		
6	Column Middle					10-#5 15-#5	0.83				

Bottom Reinforcement

Units Span	s: Width Strip	(ft), Mmax Width	(k-ft), Mmax	Xmax (ft), Xmax	As (in^2 AsMin	2), Sp (in) АзМаж	SpReq	AsReq	Bars	
1	Column Middle	12.34 18.66	0.00	0.342 0.342	0.000	25.901 39.192	0.000	0.000		
2	Column Middle	12.34 18.66	192.21 128.14	8.876 8.876	3.064 4.636	25.901 39.192	9.868 14.932	4.536 2.975	15-#5 15-#5	*3
3	Column Middle	14.75 16.25	193.62 129.08	15.870 15.870	3.664 4.037	30.972 34.121	11.800 13.929	4.548 3.003	15-#5 14-#5	*3
4	Column Middle	7.17 23.84	0.00	7.165 7.165	0.000	15.045 50.048	0.000	0.000		
5	Column Middle	12.34 18.66	232.61 155.07	14.559 14.559	3.064 4.636	25.901 39.192	8.223 14.932	5.523 3.610	18-#5 15-#5	*3
6	Column Middle	12.34 18.66	0.00	0.488 0.488	0.000	25.901 39.192	0.000	0.000		

NOTES: *3 - Design governed by minimum reinforcement.

Units	: start	(IC), Le	ength (It	2)			
		1	Long Bars	5	33	nort Bars	5
Span	Strip	Bars	Start	Length	Bars	Start	Length

Daniel Bodde

l Column Middle				
2 Column Middle	15-#5 15-#5	0.00	24.67 24.67	
3 Column Middle	15-#5 14-#5	0.00 0.00	29.50 29.50	
4 Column Middle				
5 Column Middle	18-#5 15-#5	0.00	24.67 24.67	

Flexural Capacity					
Units: x (ft),	As (in)	^2), Pf	niMn (k-ft)		
Span Strip	31	AsTop	AsBot	PhiMn-	PhiMn+
1 Caluma	0.000	2 10		100 54	0.00
I COLUMN	0.000	2 10	0.00	-132.50	0.00
	0.415	3.10	0.00	-132.56	0.00
	0.445	3.10	0.00	-132.56	0.00
	0.685	3.10	0.00	-132.56	0.00
	0.830	3.10	0.00	-132.56	0.00
Middle	0.000	4.65	0.00	-198.88	0.00
	0.240	4.65	0.00	-198.88	0.00
	0.445	4 65	0.00	-198 88	0.00
	0.685	4.65	0.00	-198.88	0.00
	0.830	4.65	0.00	-198.88	0.00
2 Column	0.000	3 10	4 65	-122 56	196.91
	0.750	3.10	4.65	-132.56	196.91
	7.314	3.10	4.65	-132.56	196.91
	8.314	0.00	4.65	0.00	196.91
	8.772	0.00	4.65	0.00	196.91
	12.335	0.00	4.65	0.00	196.91
	15.103	2 42	4.65	-103 95	196.91
	16.220	4.96	4.65	-209.63	196.91
	18.592	4.96	4.65	-209.63	196.91
	19.500	7.98	4.65	-330.96	196.91
	19.500	7.98	4.65	-624.12	196.91
	22 670	5.65	4.65	-676.53	196.91
	24.670	B 68	4.65	-676.53	196.91
Middle	0.000	4.65	4.65	-198.88	198.88
	0.750	4.65	4.65	-198.88	198.88
	4.793	4.65	4.65	-198.88	198.88
	5.793	0.00	4.65	0.00	198.68
	12 225	0.00	4.65	0.00	190.00
	15.103	0.00	4.65	0.00	198.88
	15.648	2.56	4.65	-110.51	198.88
	16.224	5.27	4.65	-224.82	198.88
	23.670	5.27	4.65	-224.82	198.88
	24.670	5.27	4.65	-224.82	198.88
3 Column	0.000	8.68	4.65	-676.53	197.86
	1.000	8.68	4.65	-676.53	197.86
	5.170	8.68	4.65	-070.53	197.00
	5.349	8.68	4.65	-358.18	197.86
	6.501	4.96	4.65	-209.63	197.86
	8.924	4.96	4.65	-209.63	197.86
	10.075	0.00	4.65	0.00	197.86
	10.625	0.00	4.65	0.00	197.86
	18 875	0.00	4.65	0.00	197.00
	19.425	0.00	4.65	0.00	197.86
	20.546	3.10	4.65	-130.70	197.86
	22.999	3.10	4.65	-130.70	197.86
	24.121	5.58	4.65	-228.87	197.86
	24.330	5.55	3.00	-426.07	197.86
	28.500	5.58	4.65	-436.03	197.80 197 86
	29.500	5.58	4.65	-436.03	197.86
Middle	0.000	5.27	4.34	-224.82	185.36
	1.000	5.27	4.34	-224.82	185.36
	8.719	5.27	9.34	-224.82	185.36
	10.625	0.00	4.34	0.00	185.36

Daniel Bodde

Advisor: Heather Sustersic

3pan 1 1 372.00 2 372.00 3 372.00 4 372.00 5 372.00 6 372.00 6 372.00		1.000 1.000 1.000 1.000 1.000 1.000 1.000	341.88 341.88 341.88 341.88 341.88 341.88 341.88	Vu 0.00 153.79 155.66 66.21 141.57 0.00	Xu 0.00 22.86 1.81 12.52 1.81 0.00
Slab Shear Capac Units: b, d	:ity ==== (in), Xu (ft)	, PhiVc,	Vu(kip)	ŧ.,	V
6 Column Middle	0.000 3. 0.145 3. 0.385 3. 0.415 3. 0.590 3. 0.830 3. 0.830 4. 0.385 4. 0.415 4. 0.415 4. 0.590 4. 0.830 4.	10 0.00 10 0.00 10 0.00 10 0.00 10 0.00 65 0.00 65 0.00 65 0.00 65 0.00 65 0.00 65 0.00 65 0.00 65 0.00	-132.56 -132.56 -132.56 -132.56 -132.56 -198.88 -198.88 -198.88 -198.88 -198.88 -198.88	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	
5 Column Middle	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} -459.41\\ -459.41\\ -459.41\\ -321.41\\ -170.04\\ -130.70\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.132.56\\ -132.56\\ -132.56\\ -132.56\\ -132.56\\ -264.94\\ -264.94\\ -264.94\\ -264.94\\ -264.94\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ -198.88\\ -198$	234.90 24.90 24.90	
4 Column Middle	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58 0.00 58 0.00 51 0.00 51 0.00 34 0.00 34 0.00 34 0.00 34 0.00 34 0.00 34 0.00 51 0.00 51 0.00 51 0.00 51 0.00 51 0.00 20 0.00 20 0.00 20 0.00 20 0.00 20 0.00 20 0.00 20 0.00 20 0.00 20 0.00 20 0.00 20 0.00 20 0.00	$\begin{array}{r} -436.03\\ -436.03\\ -436.03\\ -354.93\\ -187.35\\ -180.50\\ -180.50\\ -180.50\\ -180.50\\ -226.17\\ -234.82\\ -447.76\\ -459.41\\ -459.41\\ -459.41\\ -264.94\\ -266.94\\ -266.$		
	14.750 0. 18.875 0. 21.865 0. 22.865 6. 28.500 6. 29.500 6.	00 4.34 00 4.34 00 4.34 20 4.34 20 4.34 20 4.34 20 4.34	0.00 0.00 -264.94 -264.94 -264.94	185.36 185.36 185.36 185.36 185.36 185.36 185.36	

Flexural Transfer of Negative Unbalanced Moment at Supports

Units: Width (in), Munb (k-ft), As (in^2) Supp Width Width-c d Munb Comb Pat GammaF AsReq AsProv Add Bars

Daniel Bodde

Advisor: Heather Sustersic

	1 2 3 4 5	Not ch 83.25 83.25 83.25 Not ch	ecked 83.25 83.25 83.25 ecked	17.94 17.94 17.94	4 27. 4 221. 4 232.	.07 U1 .51 U1 .34 U1	A11 A11 A11	0.600 0.600 0.600	0.20) 1.663 1.749	1 4 3 5 5 5	4.882 5.403 5.703		-			
Pur	nchin	g Shear Aro	und Colu	mns												
	Crit	ical Section	n Proper	ties												
	Unit Supp	s: bl, b2,) bl	ьо, сс, b2	c(left), b(, c(right)) CG	(in), A G c(left	c (in') c(ri	2), Jo ight)	(in^4)	Ac		Je				
	1 2 3 4 5	Not ch 41.94 41.94 41.94 Not ch	ecked 41.94 41.94 41.94 ecked	167.78 167.78 167.78	5 0.00 5 0.00 5 0.00	0 20.9 0 20.9 0 20.9	7 2 7 2 7 2	20.97 20.97 20.97		2009 2009 2009	9.223 9.223 9.223	6e+005 6e+005 6e+005				
	Punc	hing Shear 1	Results													
	Unit Supp	s: Vu (kip)	, Munb (Vu	k-ft), v vu	ru (psi), Munb	Phi*vc (Comb Pat	psi) Gano	vaV	vu	Phi*t	70					
	1 2 3 4 5	Not ch 348. 229. 247. Not ch	ecked 70 11 10 7 02 8 ecked	- 5.9 6.1 2.1	27.07 -221.51 232.34	U1 A11 U1 A11 U1 A11	0.4	100 100 100	118.8 100.3 107.4	189. 189. 189.	.7 .7 .7					
Pur	Crit	g Shear Aron ical Section	und Drop n Proper	s = ties												
	Unit Supp	s: bl, b2, b bl	ьо, CG, b2	c(left), b(, c(right)) CG	(in), A 5 c(left	c (in') c(ri	2), Jo ight)	(in^4)	Ac		Je				
	1 2 3 4 5	Not ch 133.77 133.77 133.77 Not ch	ecked 133.77 133.77 133.77 133.77 ecked	535.01 535.01 535.01	7 0.00 7 0.00 7 0.00	0 66.8 0 66.8 0 66.8	B 6 B 6	56.88 56.88 56.88	518 518 518	83.5 83.5 83.5	1.547 1.547 1.547	9e+007 9e+007 9e+007				
	Punc	hing Shear D	Results													
	Unit Supp	s: Vu (kip)	, τα (ps Va Comb	i), Phi [,] Pat	'vc (psi) vu P	hi*vc?										
	1 2 3 4 5	Not ch 309. 190. 208. Not ch	ecked 74 Ul 14 Ul 06 Ul ecked	A11 A11 A11	59.8 36.7 40.1	129.2 129.2 129.2										
De:	flect	ions														
==:	Sect	ion propert:	ies													
	Unit	s: Ig, Icr,	Ie (in^	4), Mcr,	Mmax (k-	-ft)						I	Load I	evel	1	
	Span	le, Dea	, avg d Dead	+Live Zo	one	Ig		Icr	Mes	r	Mmax	Dead	Ie	Dea Mmax	1+Live	: Ie
	1	13350: 6527	2 1 0	33502 Ri 65270 Le Mi	ight eft iddle	133502 133502 47147		13976 13976 5096	689.22 689.22 324.11	2 -11 2 -11 1 26	-3.09 L0.50 56.95	133 133 47	3502 3502 7147	-3.09 -110.50 266.95	1	133502 133502 47147
	3	6460	4	Ri 64604 Le Mi	ight eft iddle	133502 133502 47147		22781 22781 4947	689.22 689.22 324.11	2 -85 2 -87 1 26	50.93 73.49 58.92	81 71 41	L613 7172 7147	-850.93 -873.49 268.92		81613 77172 47147
	4	7305	4	Ri 73054 Le Mi	ight eft iddle	133502 133502 47147		19851 19851 47147	689.22 689.22 324.11	2 -58 2 -39 1	82.23 97.63 0.00	133 133 47	3502 3502 7147	-582.23 -397.63 0.00	1	133502 133502 47147
	5	7305	4	Ri 73054 Le Mi	ight eft iddle	133502 133502 47147		20279 20279 5537	689.22 689.22 324.11	2 -44 2 -64 1 32	17.29 10.91 23.06	133 133 47	3502 3502 7147	-447.29 -640.91 323.06	1	133502 133502 47147
	6	13350	2 1	83502 Le	ight ft	133502 133502		13976 13976	689.22 689.22	2 -15	-3.09	133	3502 3502	-151.88 -3.09	1	133502 133502
	Maxi	mum Instant:	aneous D	eflectio	ons - Dire	ection of	Analy	sis								
	Unit	s: D (in),	Ig (in^	4)												
	Span	Ddead	Dlive	Dtotal	I Strip		Ig	LDF	Ratio	Dde	ad	Dlive	Dtot	al		
	1	-0.011	0.000	-0.013	l Column Middle 4 Column Middle	1 283 1 283	8760 87.1 8760 87,1	0.800 0.200 0.738 0.262	2.011 0.332 1.853 0.436	-0.0 -0.0 0.1	022 004 174 041	0.000	-0.0 -0.0 0.1	022 004 .74		

Daniel Bodde

Advisor: Heather Sustersic

3	0.143	0.000	0.143	Column	22432.9	0.675	1.419	0.202	0.000	0.202
				Middle	24714.2	0.325	0.620	0.088	0.000	0.088
4	-0.024	0.000	-0.024	Column	10897.1	0.675	2.920	-0.069	0.000	-0.069
				Middle	36250.1	0.325	0.423	-0.010	0.000	-0.010
5	0.122	0.000	0.122	Column	18760	0.738	1.853	0.226	0.000	0.226
				Middle	28387.1	0.262	0.436	0.053	0.000	0.053
6	-0.013	0.000	-0.013	Column	18760	0.800	2.011	-0.026	0.000	-0.026
				Middle	28387.1	0.200	0.332	-0.004	0.000	-0.004

Maximum Long-term Deflections - Direction of Analysis

Time dependant factor for sustained loads = 2.000 Units: D (in)

			Column	Strip					Middle	e Strip		
Span	Dsust	Lambda	Dos	Des+lu	Dos+1	Dtotal	Dsust	Lambda	Des	Des+lu	Dos+1	Dtotal
1	-0.022	2.000	-0.044	-0.044	-0.044	-0.067	-0.004	2.000	-0.007	-0.007	-0.007	-0.011
3	0.174	2.000	0.347	0.347	0.347	0.821	0.041	2.000	0.082	0.082	0.082	0.123
5	0.226	2.000 2.000 2.000	-0.180 0.453 -0.053	-0.180 0.453 -0.053	-0.180 0.453 -0.053	0.679	0.010	2.000 2.000 2.000	-0.020 0.107 -0.009	0.107	0.107	0.160

Material Takeoff

Reinforcement in the Direction of Analysis

Top Bars:	2408.6	1b	<=>	25.40	lb/ft	<=>	0.819	lb/ft^2		
Bottom Bars:	2513.3	1b	<=>	26.50	lb/ft	<=>	0.855	lb/ft^2		
Stirrups:	0.0	lb	<=>	0.00	lb/ft	<=>	0.000	lb/ft^2		
Total Steel:	4921.9	lb	<=>	51.90	lb/ft	<=>	1.674	lb/ft^2		
Concrete:	3111.3	ft^3	<=>	32.81	ft^3/ft	<=>	1.058	ft^3/ft^2		

Daniel Bodde

Advisor: Heather Sustersic

Appendix E: Comparison Calculations

$$\frac{\text{weights}}{\text{Sub/deck: 46exf}} = \frac{\text{weights}}{\text{Sub/deck: 46exf}} = \frac{1}{124(5)} \frac{\text{press}}{128(5)} = \frac{1}{128(5)} = \frac{$$

Daniel Bodde

$$\frac{9.68000}{1.000}$$
Deflections
$$\frac{Gomposite deck system}{Gider: Wall X44}$$
Deflections
$$I_{LR} = 1460 is^{4}$$

$$Gider: Wall X444 = 344' comber$$

$$\frac{12}{2} = 400c^{4}$$

$$\frac{12}{2} = 45.3 K$$

$$\frac{12}{2} = 45.3 K$$

$$\frac{12}{2} = \frac{5}{2} = \frac{14}{2} = 0.044 \text{ kst}$$

$$\frac{12}{2} = \frac{5}{2} = \frac{14}{2} = 0.044 \text{ kst}$$

$$\frac{12}{2} = \frac{5}{2} = \frac{14}{2} = 0.044 \text{ kst}$$

$$\frac{12}{2} = \frac{5}{2} = \frac{14}{2} = 0.044 \text{ kst}$$

$$\frac{12}{2} = \frac{5}{2} = \frac{14}{2} = 0.044 \text{ kst}$$

$$\frac{12}{2} = \frac{5}{2} = \frac{14}{2} = 0.044 \text{ kst}$$

$$\frac{12}{2} = \frac{5}{2} = \frac{14}{2} = 0.044 \text{ kst}$$

$$\frac{12}{2} = \frac{5}{2} = \frac{14}{2} = 0.044 \text{ kst}$$

$$\frac{12}{2} = \frac{5}{2} = \frac{12}{2} = \frac{1$$

Daniel Bodde

Precast Planks
Girder: W30x114 I = 4930in⁴

$$24 \text{ KA}$$

 $3i'$
 $W_{z} = 7.4 \text{ KA}f + 1.2(114)/1000 = 7.74 \text{ KA}f$
 $D_{max} = \frac{5 \text{ Wal}^{4}}{384 \text{ EI}} = 1.12 \text{ in}$
Two way Slab
deflections calculated in spSlab
Cal strip: $\Delta = 0.607^{11}$
middle strip:
 $\Delta = 6.265$
 $D_{max} = 0.607 + 0.2455 = 0.872^{11}$

Daniel Bodde

Appendix F: RSmeans Cost Estimate Tables

• Tables are represent a rough estimate of the closest size to system used in this report

Assembly B10102414300

Based on National Average Costs

W beam and girder, 25'x20' bay, 40 PSF superimposed load, 18" deep, fireproofing .702 SF/SF, 90 PSF total load

Description	Quantity	Unit	Material	Installation	Total
Structural steel project, apartment, nursing home, etc, 100-ton project, 3 to 6 stories,	6.00000	Lb.	8.40	2.58	10.98
Sprayed fireproofing, cementitious, normal density, beams, 1 hour rated, 1-3/8" thick	0.70200	S.F.	0.41	0.69	1.10
Total			\$8.80	\$3.27	\$12.07

Assembly B10102564500

Based on National Average Costs

Floor, composite metal deck, shear connectors, 5.5" slab, 30'x30' bay, 29.5" total depth, 125 PSF superimposed load, 168 PSF total load

Description	Quantity	Unit	Material	Installation	Total
Welded wire fabric, sheets, 6 x 6 - W1.4 x W1.4 (10 x 10) 121 lb. per C.S.F., A185, inc	0.01000	C.S.F.	0.15	0.36	0.51
Structural concrete, placing, elevated slab, pumped, less than 6" thick, includes strike	0.33300	C.F.	0.00	0.51	0.51
Structural concrete, ready mix, lightweight, 110 #/C.F., 3000 psi, includes local aggre	0.33300	C.F.	2.41	0.00	2.41
Concrete finishing, floors, for specified Random Access Floors in ACI Classes 1, 2, 3 an	1.00000	S.F.	0.00	0.86	0.86
Concrete surface treatment, curing, sprayed membrane compound	0.01000	C.S.F.	0.08	0.09	0.17
Weld shear connector, 3/4" dia x 4-7/8" L	0.16300	Ea.	0.12	0.33	0.45
Structural steel project, apartment, nursing home, etc, 100-ton project, 3 to 6 stories,	6.80600	Lb.	9.53	2.93	12.45
Metal floor decking, steel, non-cellular, composite, galvanized, 3" D, 20 gauge	1.05000	S.F.	2.32	1.04	3.36
Metal decking, steel edge closure form, galvanized, with 2 bends, 12" wide, 18 gauge	0.03300	L.F.	0.13	0.08	0.21
Sprayed fireproofing, cementitious, normal density, beams, 1 hour rated, 1-3/8" thick	0.66700	S.F.	0.39	0.66	1.05
Total			\$15.15	\$6.86	\$22.01

Assembly B10102197300

Based on National Average Costs

Cast-in-place concrete beam and slab, 7.5" slab, one way, 20" column, 30'x30' bay, 125 PSF superimposed load, 245 PSF total load

Description	Quantity	Unit	Material	Installation	Total
C.I.P. concrete forms, beams and girders, exterior spandrel, plywood, 12" wide, 4 use	0.15600	SFCA	0.14	1.60	1.74
C.I.P. concrete forms, beams and girders, interior, plywood, 12" wide, 4 use, includes	0.32500	SFCA	0.35	2.73	3.08
C.I.P. concrete forms, elevated slab, flat plate, plywood, to 15' high, 4 use, includes s	0.85500	S.F.	0.97	4.83	5.81
Reinforcing Steel, in place, elevated slabs, #4 to #7, A615, grade 60, incl labor for acc	4.35000	Lb.	2.44	1.87	4.31
Structural concrete, ready mix, normal weight, 3000 psi, includes local aggregate, san	0.79900	C.F.	3.32	0.00	3.32
Structural concrete, placing, elevated slab, pumped, 6" to 10" thick, includes strike of	0.79900	C.F.	0.00	1.03	1.03
Concrete finishing, floors, for specified Random Access Floors in ACI Classes 1, 2, 3 an	1.00000	S.F.	0.00	0.86	0.86
Concrete surface treatment, curing, sprayed membrane compound	0.01000	C.S.F.	0.08	0.09	0.17
Total			\$7.30	\$13.01	\$20.31

Assembly B10102303600

Based on National Average Costs

Precast concrete plank, 2" topping, 10" total thickness, 30' span, 100 PSF superimposed load, 180 PSF total load

Description	Quantity	Unit	Material	Installation	Total
C.I.P. concrete forms, elevated slab, edge forms, to 6" high, 4 use, includes shoring, e	0.10000	L.F.	0.02	0.41	0.43
Welded wire fabric, sheets, 6 x 6 - W1.4 x W1.4 (10 x 10) 121 lb. per C.S.F., A185, inc	0.01000	C.S.F.	0.15	0.36	0.51
Structural concrete, ready mix, normal weight, 3000 psi, includes local aggregate, san	0.17000	C.F.	0.71	0.00	0.71
Structural concrete, placing, elevated slab, pumped, less than 6" thick, includes strike	0.17000	C.F.	0.00	0.26	0.26
Concrete finishing, floors, basic finishing for unspecified flatwork, bull float, manual fl	1.00000	S.F.	0.00	1.13	1.13
Concrete surface treatment, curing, sprayed membrane compound	0.01000	C.S.F.	0.08	0.09	0.17
Precast slab, roof/floor members, grouted, hollow, 8" thick, prestressed	1.00000	S.F.	7.85	2.52	10.37
Total			\$8.80	\$4.77	\$13.57

Daniel Bodde

Advisor: Heather Sustersic

Assembly B10102226800

Based on National Average Costs

Flat slab, concrete, with drop panels, 10.5" slab/9" panel, 22" column, 30'x30' bay, 125 PSF superimposed load, 269 PSF total load								
Description	Quantity	Unit	Material	Installation	Total			
C.I.P. concrete forms, beams and girders, exterior spandrel, plywood, 12" wide, 4 use	0.03600	SFCA	0.03	0.37	0.4			
C.I.P. concrete forms, elevated slab, flat slab with drop panels, to 15' high, 4 use, incl	0.99200	S.F.	1.27	5.80	7.02			
Reinforcing Steel, in place, elevated slabs, #4 to #7, A615, grade 60, incl labor for acc	4.66200	Lb.	2.61	2.00	4.63			
Structural concrete, ready mix, normal weight, 3000 psi, includes local aggregate, san	0.95800	C.F.	3.99	0.00	3.99			
Structural concrete, placing, elevated slab, pumped, 6" to 10" thick, includes strike of	0.95800	C.F.	0.00	1.24	1.24			
Concrete finishing, floors, for specified Random Access Floors in ACI Classes 1, 2, 3 an	1.00000	S.F.	0.00	0.86	0.8			
Concrete surface treatment, curing, sprayed membrane compound	0.01000	C.S.F.	0.08	0.09	0.12			

Total

\$8.00

\$10.36 \$18.36